Uber Drive Dataset

import pandas as pd
import numpy as np
import seaborn as sns

import matplotlib.pyplot as plt

Step One: Import Data and do iniial quality check

Import related libraries, Read file \ Analyze the data and records using describe shape and info ... \ Check

duplication \ Check null values \ check outliers \ check datatypes \ rename fields appropereiatly

pd.set_option('display.max_columns', None)

df=pd.read_csv('/Users/Rana/Desktop/Uber_drives.csv')

df.shape

(1156, 7)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1156 entries, @ to 1155
Data columns (total 7 columns):

Column

® START_DATE*
1 END_DATEx

2 CATEGORY*

3 START*

4 STOP%*

5 MILESx

6 PURPOSEx

dtypes: float64(1), object(6)
memory usage: 63.3+ KB

df.tail()

START_DATE*

1151 12/31/16 13:24

1152 12/31/16 15:03

1153 12/31/16 21:32

1154 12/31/16 22:08

1155 Totals

Non-Null Count Dtype
1156 non-null object
1155 non-null object
1155 non-null object
1155 non-null object
1155 non-null object
1156 non-null float64
653 non-null object
END_DATE* CATEGORY*
12/13;:/1(23 Business
12/31/16 .
15:38 Business
12/31/16 .
21:50 Business
12/3;{;? Business
NaN NaN

START*

Kar?chi

Unknown
Location

Katunayake

Gampaha

NaN

STOP*

Unknown
Location

Unknown
Location

Gampaha

llukwatta

NaN

MILES*

3.9

16.2

6.4

48.2

12204.7

PURPOSE*
Temporary
Site

Meeting

Temporary
Site

Temporary
Site

NaN

df.duplicated().sum()

Step two: Data cleaning , wrangling

Remove duplicates) Filter fields \ Rename fields \ Treat null values \ Check and change data types where
needed \ identify any outliers \ Created new fields as needed

Remove unwanted rows
df = df.loc[df["START_DATEx"] !'= "Totals"]

df=df.drop_duplicates()

#Change data types rename fields
df=df.rename(columns={'MILES*"':'Miles"', 'START_DATEx':'Start_Date', 'END_DATEx':'End_Date'

#Change data types

df['Miles']=df['Miles'].astype(int)
df['Start_Date'l=pd.to_datetime(df['Start_Date'l, errors='ignore')
df['End_Date']=pd.to_datetime(df['End_Date'l, errors='ignore')

#Add new fields for analysis purposees

df ['Month']=pd.to_datetime(df['Start_Date'l).dt.month

df ['Day']=pd.to_datetime(df['Start_Date']).dt.day_name()
df['Start_Time']=pd.to_datetime(df['Start_Date']).dt.time
df['End_Time']l=pd.to_datetime(df['End_Date']).dt.time

Fill Up null with 'Unknown'
df ['Purpose'].fillna(value="'Unknown' , inplace=True)
df ['Category'].fillna(value='Unknown' , inplace=True)

Step3: To identify outliers,

we will add new field that define the trips duration to measure it aginst milles travaled. \ And Exclude
records with zero duration

df['Duration']=df['End_Date']-df['Start_Date']
df['Duration_Time']l=df['Duration'].dt.seconds

df=df [df['Duration_Time']l != 0]

Find a relation between trips durations and miles.

df

Start_Date End_Date Category START* STOP* Miles Purpose Month

2016-01-01 2010701~ . . Fort
21:11:00 01 Business Fort Pierce pi
M1: 21117:00 ierce

o1

Meal/Entertain

2016-01- 2016-01- Fort
1 02 02 Business Fort Pierce pi or 5 Unknown
01:25:00 01:37:00 erce

2016-01- 2016-01-

2 02 02 Business Fort Pierce P.Fort 4 Errand/Supplies
20:25:00 20:38:00 erce
2016-01-
3 05210712;%'6 05 Business Fort Pierce P.Fort 4 Meeting
:31: 17:45:00 ierce
2016-01- 2016-01- West
4 06 06 Business Fort Pierce Palm 63 Customer Visit
14:42:00 15:49:00 Beach
2016-12-
1150 2010?(1);_033 31 Business Kar?chi Kar?chi 0 Meeting
o 01:14:00
2016-12-
1151 2012_;31_033 31 Business Kar?chi lJl_nkn?yvn 3 Temporary Site
124: 13:42:00 ocation
2016-12-31 2016-12- - Unknown Unknown .
1152 15:03:00 31 Business Locati Locati 16 Meeting
:03: 15:38:00 ocation ocation
2016-12-
1153 2016._12._31 31 Business Katunayake Gampaha 6 Temporary Site
21:32:00 oRAR
21:50:00
2016-12-
1154 2016._12._31 31 Business Gampaha llukwatta 48 Temporary Site
22:08:00 23:51:00

1150 rows x 13 columns

Explore the corelationship between duration of trip and miles Travelled

correlation = df['Duration_Time'l.corr(df['Miles'])
correlation

0.8469995919057344

df[['Miles', 'Duration_Time']].describe()

Miles Duration_Time

count 1150.000000 1150.000000
mean 10.090435 1399.356522
std 21.564375 1640.587024
min 0.000000 60.000000

25% 2.000000 600.000000

12

12

12

12

12

Day Start
Friday 2’
Saturday 01
Saturday 20
Tuesday 17
Wednesday 14
Saturday 01
Saturday 13
Saturday 15
Saturday 21
Saturday 22!

Miles Duration_Time
50% 6.000000 990.000000
75% 10.000000 1680.000000

max 310.000000 20160.000000

Key points to interpret this value:

A correlation coefficient of 0.8469995919057344 indicates a strong positive linear relationship between the two variables.
Magnitude: 0.847 is close to 1, so the association is strong. Values rise together quite consistently. Direction: Positive,
meaning as one variable increases, the other tends to increase as well. Linear assumption: This measure reflects linear
correlation. Sensitivity to outliers: Correlation can be affected by outliers. A few extreme values can inflate or deflate the

coefficient.

Scatter plot of Duration_Time vs Miles to assess the relationship and
variability.

df.plot.scatter(x='Miles', y='Duration_Time',color="'red', grid=True)

<AxesSubplot:xlabel='Miles', ylabel='Duration_Time'>

20000 - . .
17500 -
15000 -
Y]
E 12500 -
= en o¥
& 10000 - P . .
=] . . CL I
[J—
w7200 - - - = =
S : - o
5000 - e 1 5
(1)
2500
[] []
: L]
IC EI':' l':ll 0 lE: 0 2'5' 0 250 300
Miles

Handling and dicovering Miles distribution using histgram to confirm
skewness.

df['Miles'].plot(kind="hist",color="red', grid=True)

<AxesSubplot:ylabel="'Frequency'>

1000 -

800 -

600 -

Frequency

400 -

200 -

] E:ZI 1EII-CI lflr{l EEII-II 2_;--3 EIEI-ZI
Boxplots to identify outliers
df['Miles'].plot(kind="'box")

<AxesSubplot:>

300 -
250 -
200 -

150 -

00O ID D

100 -
50 -

0-

Miles

MORE EDA

df['Miles'].groupby(df['Month']).mean().plot(kind="bar',color="'red',grid=True)

<AxesSubplot:xlabel='Month'>

2000 -
175 -
150 -
125 -
100 -
75 -
50 -
25 -
00 -

1 1 1 1 1 1 1 1
— (o] (] = [T V=] P~ =] =]

Month

11 -
12 -

10 -

df ['Miles'].groupby(df['Purpose']).sum().plot(kind="bar"',color="'red', grid=True)

<AxesSubplot:xlabel='Purpose'>

4000 -
3000 -
2000 -
1000 -
n . . . I .
0) \) \ \ \ \ \) \ \
- wi e = T] =
. o ow X F § £ 2B 2 & £
5 & - 2 = £ E £ £ @ 3
= i iy E o = 1;.:: w a = c
. o k= I u = i bt = L i
= - m = =] c = = & [=
t | = =
=] o L [5 2 w [~] =
=] b v = = [=%
E 2 %] [[=
£ 2 3 8 o =
[T} L = = I
[su] i8]

Pury

P}

ose

df['Miles'].groupby(df['Category']).sum().plot(kind="bar"',color="yellow")

<AxesSubplot:xlabel="'Category'>

10000 -
BOOO -
6000 -
4000 -

2000 -

[

]]
] [
o &

[a]
L =
= [F]
[ia] (=9

Category

Summary of Findings:

Observations: n = 1,150 Miles Mean: 10.09 miles Median (50th percentile): 6.00 miles Range: min 0.0, max 310.0 miles
Spread: std dev = 21.56 miles Q1-Q3: 2.0 miles (25th percentile) to 10.0 miles (75th percentile) There is a wide range with
a long tail toward higher mile values, and the mean is higher than the median, suggesting right-skewness.Duration_Time
Mean: 1,399.36 seconds (= 23.32 minutes) Median: 990.0 seconds (= 16.5 minutes) Range: min 60.0 s, max 20,160.0 s
Spread: std dev = 1,640.59 seconds Q1-Q3: 600 s to 1,680 s The mean is notably higher than the median, indicating
substantial right skew and a few long-duration observations. The maximum duration is over 5.6 hours (20,160 s).Potential
interpretations The dataset likely contains trips or runs with varying lengths: Short trips cluster around a few minutes
(median ~16.5 minutes). A minority of trips are very long (max ~5.6 hours), pulling the mean up. If Miles and Duration_Time
are paired per observation (i.e., each row is a trip with its distance and duration), you might expect a positive relationship

between Miles and Duration_Time, though the rate (time per mile) could vary (a few long trips could inflate duration but not
proportionally add miles).

