
Uber Drive Dataset

Step One: Import Data and do iniial quality check
Import related libraries, Read file \ Analyze the data and records using describe shape and info ... \ Check

duplication \ Check null values \ check outliers \ check datatypes \ rename fields appropereiatly

(1156, 7)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1156 entries, 0 to 1155
Data columns (total 7 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   START_DATE*  1156 non-null   object 
 1   END_DATE*    1155 non-null   object 
 2   CATEGORY*    1155 non-null   object 
 3   START*       1155 non-null   object 
 4   STOP*        1155 non-null   object 
 5   MILES*       1156 non-null   float64
 6   PURPOSE*     653 non-null    object 
dtypes: float64(1), object(6)
memory usage: 63.3+ KB

START_DATE* END_DATE* CATEGORY* START* STOP* MILES* PURPOSE*

1151 12/31/16 13:24
12/31/16
13:42 Business Kar?chi

Unknown
Location 3.9

Temporary
Site

1152 12/31/16 15:03
12/31/16
15:38 Business

Unknown
Location

Unknown
Location 16.2 Meeting

1153 12/31/16 21:32
12/31/16
21:50 Business Katunayake Gampaha 6.4

Temporary
Site

1154 12/31/16 22:08
12/31/16
23:51 Business Gampaha Ilukwatta 48.2

Temporary
Site

1155 Totals NaN NaN NaN NaN 12204.7 NaN

In [229… import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [230… pd.set_option('display.max_columns', None)

In [212… df=pd.read_csv('/Users/Rana/Desktop/Uber_drives.csv')

In [213… df.shape

Out[213…

In [214… df.info()

In [215… df.tail()

Out[215…



1

Step two: Data cleaning , wrangling

Remove duplicates\ Filter fields \ Rename fields \ Treat null values \ Check and change data types where

needed \ identify any outliers \ Created new fields as needed

Step3: To identify outliers ,

we will add new field that define the trips duration to measure it aginst milles travaled. \ And Exclude

records with zero duration

Find a relation between trips durations and miles.

In [216… df.duplicated().sum()

Out[216…

In [217… # Remove unwanted rows 
df = df.loc[df["START_DATE*"] != "Totals"]

In [218… df=df.drop_duplicates()

In [219… #Change data types rename fields
df=df.rename(columns={'MILES*':'Miles','START_DATE*':'Start_Date', 'END_DATE*':'End_Date'

In [220… #Change data types
df['Miles']=df['Miles'].astype(int)
df['Start_Date']=pd.to_datetime(df['Start_Date'], errors='ignore')
df['End_Date']=pd.to_datetime(df['End_Date'], errors='ignore')

In [221… #Add new fields for analysis purposees 
df['Month']=pd.to_datetime(df['Start_Date']).dt.month
df['Day']=pd.to_datetime(df['Start_Date']).dt.day_name()
df['Start_Time']=pd.to_datetime(df['Start_Date']).dt.time
df['End_Time']=pd.to_datetime(df['End_Date']).dt.time

In [190… # Fill Up null with 'Unknown'
df['Purpose'].fillna(value='Unknown' , inplace=True)
df['Category'].fillna(value='Unknown' , inplace=True)

In [222… df['Duration']=df['End_Date']-df['Start_Date']
df['Duration_Time']=df['Duration'].dt.seconds

In [223… df=df[df['Duration_Time']  != 0]

In [120… df



Start_Date End_Date Category START* STOP* Miles Purpose Month Day Start_

0 2016-01-01
21:11:00

2016-01-
01

21:17:00
Business Fort Pierce Fort

Pierce
5 Meal/Entertain 1 Friday 21

1
2016-01-

02
01:25:00

2016-01-
02

01:37:00
Business Fort Pierce Fort

Pierce
5 Unknown 1 Saturday 01

2
2016-01-

02
20:25:00

2016-01-
02

20:38:00
Business Fort Pierce Fort

Pierce
4 Errand/Supplies 1 Saturday 20

3 2016-01-
05 17:31:00

2016-01-
05

17:45:00
Business Fort Pierce Fort

Pierce
4 Meeting 1 Tuesday 17

4
2016-01-

06
14:42:00

2016-01-
06

15:49:00
Business Fort Pierce

West
Palm

Beach
63 Customer Visit 1 Wednesday 14:

... ... ... ... ... ... ... ... ... ...

1150 2016-12-31
01:07:00

2016-12-
31

01:14:00
Business Kar?chi Kar?chi 0 Meeting 12 Saturday 01

1151 2016-12-31
13:24:00

2016-12-
31

13:42:00
Business Kar?chi Unknown

Location
3 Temporary Site 12 Saturday 13:

1152 2016-12-31
15:03:00

2016-12-
31

15:38:00
Business Unknown

Location
Unknown
Location

16 Meeting 12 Saturday 15:

1153 2016-12-31
21:32:00

2016-12-
31

21:50:00
Business Katunayake Gampaha 6 Temporary Site 12 Saturday 21

1154 2016-12-31
22:08:00

2016-12-
31

23:51:00
Business Gampaha Ilukwatta 48 Temporary Site 12 Saturday 22:

1150 rows × 13 columns

Explore the corelationship between duration of trip and miles Travelled

0.8469995919057344

Miles Duration_Time

count 1150.000000 1150.000000

mean 10.090435 1399.356522

std 21.564375 1640.587024

min 0.000000 60.000000

25% 2.000000 600.000000

Out[120…

In [124… correlation = df['Duration_Time'].corr(df['Miles'])
correlation

Out[124…

In [224… df[['Miles','Duration_Time']].describe()

Out[224…



Miles Duration_Time

50% 6.000000 990.000000

75% 10.000000 1680.000000

max 310.000000 20160.000000

Key points to interpret this value:
A correlation coefficient of 0.8469995919057344 indicates a strong positive linear relationship between the two variables.
Magnitude: 0.847 is close to 1, so the association is strong. Values rise together quite consistently. Direction: Positive,
meaning as one variable increases, the other tends to increase as well. Linear assumption: This measure reflects linear
correlation. Sensitivity to outliers: Correlation can be affected by outliers. A few extreme values can inflate or deflate the
coefficient.

Scatter plot of Duration_Time vs Miles to assess the relationship and
variability.

<AxesSubplot:xlabel='Miles', ylabel='Duration_Time'>

Handling and dicovering Miles distribution using histgram to confirm
skewness.

<AxesSubplot:ylabel='Frequency'>

In [225… df.plot.scatter(x='Miles', y='Duration_Time',color='red', grid=True)

Out[225…

In [80]: df['Miles'].plot(kind='hist',color='red', grid=True)

Out[80]:



Boxplots to identify outliers

<AxesSubplot:>

MORE EDA

<AxesSubplot:xlabel='Month'>

In [60]: df['Miles'].plot(kind='box')

Out[60]:

In [66]: df['Miles'].groupby(df['Month']).mean().plot(kind='bar',color='red',grid=True)

Out[66]:



<AxesSubplot:xlabel='Purpose'>

<AxesSubplot:xlabel='Category'>

Summary of Findings:
Observations: n = 1,150 Miles Mean: 10.09 miles Median (50th percentile): 6.00 miles Range: min 0.0, max 310.0 miles
Spread: std dev ≈ 21.56 miles Q1–Q3: 2.0 miles (25th percentile) to 10.0 miles (75th percentile) There is a wide range with
a long tail toward higher mile values, and the mean is higher than the median, suggesting right-skewness.Duration_Time
Mean: 1,399.36 seconds (≈ 23.32 minutes) Median: 990.0 seconds (≈ 16.5 minutes) Range: min 60.0 s, max 20,160.0 s
Spread: std dev ≈ 1,640.59 seconds Q1–Q3: 600 s to 1,680 s The mean is notably higher than the median, indicating
substantial right skew and a few long-duration observations. The maximum duration is over 5.6 hours (20,160 s).Potential
interpretations The dataset likely contains trips or runs with varying lengths: Short trips cluster around a few minutes
(median ~16.5 minutes). A minority of trips are very long (max ~5.6 hours), pulling the mean up. If Miles and Duration_Time
are paired per observation (i.e., each row is a trip with its distance and duration), you might expect a positive relationship

In [67]: df['Miles'].groupby(df['Purpose']).sum().plot(kind='bar',color='red', grid=True)

Out[67]:

In [68]: df['Miles'].groupby(df['Category']).sum().plot(kind='bar',color='yellow')

Out[68]:



between Miles and Duration_Time, though the rate (time per mile) could vary (a few long trips could inflate duration but not
proportionally add miles).


